Multi-objective Optimal Design of a Five-Phase Fault-Tolerant Axial Flux PM Motor
نویسندگان
چکیده
Electric motors used for traction purposes in electric vehicles (EVs) must meet several requirements, including high efficiency, high power density and faulttolerance. Among them, permanent magnet synchronous motors (PMSMs) highlight. Especially, five-phase axial flux permanent magnet (AFPM) synchronous motors are particularly suitable for in-wheel applications with enhanced fault-tolerant capabilities. This paper is devoted to optimally design an AFPM for in-wheel applications. The main geometric, electric and mechanical parameters of the designed AFPM are calculated by applying an iterative method based on a set of analytical equations, which is assisted by means of a reduced number of three-dimensional finite element method (3D-FEM) simulations to limit the computational burden. To optimally design the AFPM, a constrained multi-objective optimization process based on a genetic algorithm is applied, in which two objective functions are considered, i.e. the power density and the efficiency. Several fault-tolerance constraints are settled during the optimization process to ensure enhanced fault-tolerance in the resulting motor design. The accuracy of the best solution attained is validated by means of 3D-FEM simulations.
منابع مشابه
Optimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM
Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...
متن کاملDouble Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor
Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brus...
متن کاملSensor-less Vector Control of a Novel Axial Field Flux-Switching Permanent-Magnet Motor with High-Performance Current Controller
Axial field flux switching motor with sandwiched permanent magnet (AFFSSPM) is a novel of flux switching motor. Based on the vector control method, the mathematical model of the AFFSSPM is derived and the operating performance of the AFFSSPM in the overall operating region is investigated.A novel control method for the AFFSSPM drive system, including the id =0, maximum torque per ampere, consta...
متن کاملObserver Based Open Transistor Fault Diagnosis and Fault- Tolerant Control of Five-Phase PM Motor Drive for Application in Electric Vehicles
to meet increasing demand for higher reliability in power electronics converters applicable in electric vehicles, fault detection (FD) is an important part of the control algorithm. In this paper, a model based open transistor fault diagnosis method is presented for a voltage-source inverter (VSI) supplying a five-phase PM motor drive. To realize this goal, a model based observer is designed to...
متن کاملA new optimization of segmented Interior permanent magnet synchronous motor based on increasing flux weakening range and output torque
In this paper a new optimization function for increasing the flux weakening range and output torque value of segmented interior permanent magnet synchronous motor (SIPMSM) is presented. In proposed objective function normalized characteristic current and saliency ratio are considered as two optimization variables during optimization process. The focus of this paper is rotor structure design suc...
متن کامل